用PostgreSQL找回618秒逝去的青春 - 递归收敛优化 原作者:digoal/德哥 创作时间:2016-12-01 13:10:48+08 |
doudou586 发布于2016-12-06 13:10:48 评论: 1 浏览: 5611 顶: 763 踩: 760 |
有一个这样的场景,一张小表A,里面存储了一些ID,大约几百个。(比如说巡逻车辆ID,环卫车辆的ID,公交车,微公交的ID)。
另外有一张日志表B,每条记录中的ID是来自前面那张小表的,但不是每个ID都出现在这张日志表中,比如说一天可能只有几十个ID会出现在这个日志表的当天的数据中。 (比如车辆的行车轨迹数据,每秒上报轨迹,数据量就非常庞大)。
那么我怎么快速的找出今天没有出现的ID呢。(哪些巡逻车辆没有出现在这个片区,是不是偷懒了?哪些环卫车辆没有出行,哪些公交或微公交没有出行)?
select id from A where id not in (select id from B where time between ? and ?);
这个QUERY会很慢,有什么优化方法呢?
当然,你还可以让车辆签到的方式来解决这个问题,但是总有未签到的,或者没有这种设计的时候,那么怎么解决呢?
其实方法也很精妙,和我之前做的两个CASE很相似。
《时序数据合并场景加速分析和实现 - 复合索引,窗口分组查询加速,变态递归加速》
《distinct xx和count(distinct xx)的变态递归优化方法 - 索引收敛(skip scan)扫描》
在B表中,其实ID的值是很稀疏的,只是由于是流水,所以总量大。
优化的手段就是对B的取值区间,做递归的收敛查询,然后再做NOT IN就很快了。
建表
create table a(id int primary key, info text); create table b(id int primary key, aid int, crt_time timestamp); create index b_aid on b(aid);
插入测试数据
-- a表插入1000条 insert into a select generate_series(1,1000), md5(random()::text); -- b表插入500万条,只包含aid的500个id。 insert into b select generate_series(1,5000000), generate_series(1,500), clock_timestamp();
优化前的性能
\timing explain (analyze,verbose,timing,costs,buffers) select * from a where id not in (select aid from b); QUERY PLAN ---------------------------------------------------------------------------------------------------- Seq Scan on public.a (cost=0.00..67030021.50 rows=500 width=37) (actual time=2932.080..618776.881 rows=500 loops=1) Output: a.id, a.info Filter: (NOT (SubPlan 1)) Rows Removed by Filter: 500 Buffers: shared hit=27037, temp read=4264454 written=8545 SubPlan 1 -> Materialize (cost=0.00..121560.00 rows=5000000 width=4) (actual time=0.002..298.049 rows=2500125 loops=1000) Output: b.aid Buffers: shared hit=27028, temp read=4264454 written=8545 -> Seq Scan on public.b (cost=0.00..77028.00 rows=5000000 width=4) (actual time=0.009..888.427 rows=5000000 loops=1) Output: b.aid Buffers: shared hit=27028 Planning time: 0.969 ms Execution time: 618794.299 ms (14 rows) 另外你有一种选择是使用outer join, b表同样需要全扫一遍,有很大的改进,不过还可以更好,继续往后看。 postgres=# explain (analyze,verbose,timing,costs,buffers) select a.id from a left join b on (a.id=b.aid) where b.* is null; QUERY PLAN ---------------------------------------------------------------------------------------------------- Hash Right Join (cost=31.50..145809.50 rows=25000 width=4) (actual time=2376.777..2376.862 rows=500 loops=1) Output: a.id Hash Cond: (b.aid = a.id) Filter: (b.* IS NULL) Rows Removed by Filter: 5000000 Buffers: shared hit=27037 -> Seq Scan on public.b (cost=0.00..77028.00 rows=5000000 width=44) (actual time=0.012..1087.997 rows=5000000 loops=1) Output: b.aid, b.* Buffers: shared hit=27028 -> Hash (cost=19.00..19.00 rows=1000 width=4) (actual time=0.355..0.355 rows=1000 loops=1) Output: a.id Buckets: 1024 Batches: 1 Memory Usage: 44kB Buffers: shared hit=9 -> Seq Scan on public.a (cost=0.00..19.00 rows=1000 width=4) (actual time=0.010..0.183 rows=1000 loops=1) Output: a.id Buffers: shared hit=9 Planning time: 0.302 ms Execution time: 2376.934 ms (18 rows) 递归收敛优化后的性能 explain (analyze,verbose,timing,costs,buffers) select * from a where id not in ( with recursive skip as ( ( select min(aid) aid from b where aid is not null ) union all ( select (select min(aid) aid from b where b.aid > s.aid and b.aid is not null) from skip s where s.aid is not null ) -- 这里的where s.aid is not null 一定要加,否则就死循环了. ) select aid from skip where aid is not null ); QUERY PLAN ------------------------------------------------------------------------------------------------ Seq Scan on public.a (cost=54.98..76.48 rows=500 width=37) (actual time=10.837..10.957 rows=500 loops=1) Output: a.id, a.info Filter: (NOT (hashed SubPlan 5)) Rows Removed by Filter: 500 Buffers: shared hit=2012 SubPlan 5 -> CTE Scan on skip (cost=52.71..54.73 rows=100 width=4) (actual time=0.042..10.386 rows=500 loops=1) Output: skip.aid Filter: (skip.aid IS NOT NULL) Rows Removed by Filter: 1 Buffers: shared hit=2003 CTE skip -> Recursive Union (cost=0.46..52.71 rows=101 width=4) (actual time=0.037..10.104 rows=501 loops=1) Buffers: shared hit=2003 -> Result (cost=0.46..0.47 rows=1 width=4) (actual time=0.036..0.036 rows=1 loops=1) Output: $1 Buffers: shared hit=4 InitPlan 3 (returns $1) -> Limit (cost=0.43..0.46 rows=1 width=4) (actual time=0.031..0.032 rows=1 loops=1) Output: b_1.aid Buffers: shared hit=4 -> Index Only Scan using b_aid on public.b b_1 (cost=0.43..131903.43 rows=5000000 width=4) (actual time=0.030..0.030 rows=1 loops=1) Output: b_1.aid Index Cond: (b_1.aid IS NOT NULL) Heap Fetches: 1 Buffers: shared hit=4 -> WorkTable Scan on skip s (cost=0.00..5.02 rows=10 width=4) (actual time=0.019..0.019 rows=1 loops=501) Output: (SubPlan 2) Filter: (s.aid IS NOT NULL) Rows Removed by Filter: 0 Buffers: shared hit=1999 SubPlan 2 -> Result (cost=0.47..0.48 rows=1 width=4) (actual time=0.018..0.018 rows=1 loops=500) Output: $3 Buffers: shared hit=1999 InitPlan 1 (returns $3) -> Limit (cost=0.43..0.47 rows=1 width=4) (actual time=0.017..0.017 rows=1 loops=500) Output: b.aid Buffers: shared hit=1999 -> Index Only Scan using b_aid on public.b (cost=0.43..66153.48 rows=1666667 width=4) (actual time=0.017..0.017 rows=1 loops=500) Output: b.aid Index Cond: ((b.aid > s.aid) AND (b.aid IS NOT NULL)) Heap Fetches: 499 Buffers: shared hit=1999 Planning time: 0.323 ms Execution time: 11.082 ms (46 rows)
采用收敛查询优化后,耗时从最初的 618794毫秒 降低到了 11毫秒 ,感觉一下子节约了好多青春。